lunes, 13 de diciembre de 2010

XFCE

Xfce es un entorno de escritorio para GNU/Linux y otros sistemas derivados de Unix.
Más ligero que GNOME y KDE, consume menos recursos del sistema, por lo que es más adecuado para equipos con menos recursos de hardware, como memoria RAM o CPU.
Al igual que GNOME, utiliza las librerías gráficas GTK para mostrar los elementos de la interfaz.

Es el entorno de escritorio por defecto en Xubuntu.

Xfce también provee el marco de trabajo para el desarrollo de aplicaciones. Además de Xfce, hay otros programas que también utilizan las bibliotecas de Xfce, como el editor de texto Mousepad, el reproductor multimedia Xfmedia o el emulador de consola Terminal.
Xfce está basado en la biblioteca GTK+ 2.x y utiliza el gestor de ventanas Xfwm.
Xfce se parecía en sus inicios al entorno de escritorio CDE, pero fue alejándose notablemente debido a que fue reprogramado nuevamente desde cero (ya lo había hecho entre las versiones 2.x y 3.x), y a diferencia de sus anteriores versiones, ahora cuenta con un sistema modular pudiendo gestionar un sistema de tipo multihead de manera bastante sencilla, y sigue todos los estándares establecidos por Freedesktop.org.

Thunar es el nuevo gestor de archivos predeterminado para Xfce desde la versión 4.4. Es similar a Nautilus y es diseñado para máxima velocidad y mínimo consumo de memoria. Xfce también posee un gestor de archivos comprimidos llamado Xarchiver.

viernes, 10 de diciembre de 2010


EL ESCRITORIO DE LINUX:


Su aspecto es el siguiente:











HISTORIA:

Linux, es un sistema operativo. Es una implementación de libre distribución UNIX para computadoras personales (PC), servidores y estaciones de trabajo.
Linux es la denominación de un sistema operativo tipo-Unix y el nombre de un núcleo.
Es uno de los paradigmas más prominentes del software libre y del desarrollo del código abierto, cuyo código fuente está disponible públicamente, para que cualquier persona puede libremente usarlo, estudiarlo, redistribuirlo y, con los conocimientos informáticos adecuados, modificarlo.
Linux es usado como sistema operativo en una amplia variedad de plataformas de hardware y computadores, incluyendo los computadores de escritorio (PCs x86 y x86-64, y Macintosh y PowerPC), servidores, supercomputadores, mainframes, y dispositivos empotrados así como teléfonos celulares.
En 1983 Richard Stallman fundó el proyecto GNU, con el fin de crear sistemas operativos parecidos a UNIX y compatibles con POSIX. Dos años más tarde creó la "Fundación del Software Libre" y escribió la GNU General Public License para posibilitar el software libre en el sistema de copyright.
El software GNU se extendía muy de prisa y dentro de poco una multitud de programas fueron escritos, de manera que ya a principios de 1990 había bastantes software GNU como para hacer un sistema operativo propio, pero faltaba el Kernel.
A principios de los años
1990, no había un sistema operativo libre completo. A pesar de que el proyecto GNU era desarrollado constantemente, no disponía sin embargo de ningún buen Kernel basado en UNIX, por el contrario era un número de proyectos de software libres que podían ser traducidos en las variantes UNIX mediante el compilador de GNU.
LINUS BENEDIT TORVALD
Linus Benedit Torvalds nació en Helsinki, Finlándia, en el año de 1969.
Su abuelo, matemático y estadista le compró un Comodore en 1980 y fue quien "enganchó" a Linus al mundo de los computadores.
En 1988 Linus Torvalds entrá a la Universidad. Ese mismo año fue cuando el sistema operativo didáctico, basado en UNIX y creado por Andy Tannenbaum, empezó a cobrar importáncia. Dicho sistema era el Minix.
Linus entró a formar parte de la comunidad de usuarios Minix. Andy Tannenbaum cometió un error en su sistema operativo. Era demasiado limitado, tanto técnicamente como politícamente, en ningún momento tuvo en cuenta la posibilidad de incluir Minix al proyecto GNU. La creación de Andy Tannenbaum estaba pensando para ser distribuida. Su primer error fue ceder todos sus derechos a Prentice Hall, que empezó a cobrar 150 dólares por licencia.
Así, Linus tomó la decisión de cambiar esta política debido a que el sistema Minix era ideal para los estudiantes de sistemas operativos, y su precio era considerablemente alto.
Año 1991, cuando Linus se acabó de comprar su primer 386, la intención era crear un nuevo Kernel (al que porteriormente llamaría Linux) de UNIX basado en el Kernel de Minix y modificarlo periódicamente de manera que fuera capaz de ejecutar aplicaciones GNU.
La historia de Linux está fuertemente vinculada a la del proyecto GNU.
Hacia 1991, cuando la primera versión del núcleo
Linux fue liberada, el proyecto GNU había producido varios de los componentes del sistema operativo, incluyendo un intérprete de comandos, una biblioteca C y un compilador, pero aún no contaba con el núcleo que permitiera complementar el sistema operativo.
Entonces, el núcleo creado por
Linus Torvalds, llenó el hueco final que el sistema operativo GNU exigía.
Linus nunca anunció la versión 0.01 de Linux (agosto 1991), esta versión no era ejecutable, solamente incluía los principios del nucleo del sistema, estaba escrita en lenguaje ensamblador y asumía que uno tenía acceso a un sistema Minix para su compilación.
El 5 de octubre de 1991, Linus anuncio la primera versión "Oficial" de Linux, - versión 0.02.
Con esta versión Linus pudo ejecutar
Bash (GNU Bourne Again Shell) y gcc (Compilador GNU de C) pero no mucho mas funcionaba. En este estado de desarrollo ni se pensaba en los terminos soporte, documentacion, distribución. Después de la versión 0.03, Linus salto en la numeración hasta la 0.10, más programadores a lo largo y ancho del internet empezaron a trabajar en el proyecto y después de revisiones, Linus incremento el numero de version hasta la 0.95 (marzo 1992). En Diciembre de 1993 el nucleo del sistema estaba en la versión 0.99 y la versión 1.0, llego el 14 de marzo de 1994.
Linux se refiere estrictamente al núcleo Linux, pero es comúnmente utilizado para describir al sistema operativo tipo Unix (que implementa el estándar POSIX), que utiliza primordialmente filosofía y metodologías libres (también conocido como GNU/Linux) y que está formado mediante la combinación del núcleo Linux con las bibliotecas y herramientas del proyecto GNU y de muchos otros proyectos/grupos de software (libre onolibre).

Caracteristicas:
  • Multitarea: La palabra multitarea describe la habilidad de ejecutar varios programas al mismo tiempo. LINUX utiliza la llamada multitarea preeventiva, la cual asegura que todos los programas que se estan utilizando en un momento dado seran ejecutados, siendo el sistema operativo el encargado de ceder tiempo de microprocesador a cada programa.
  • Multiusuario: Muchos usuarios usando la misma maquina al mismo tiempo.
  • Multiplataforma: Las plataformas en las que en un principio se puede utilizar Linux son 386-, 486-. Pentium, Pentium Pro, Pentium II,Amiga y Atari, tambien existen versiones para su utilizacion en otras plataformas, como Alpha, ARM,MIPS, PowerPC y SPARC.
  • Multiprocesador: Soporte para sistemas con mas de un procesador esta disponible para Intel y SPARC.
  • Funciona en modo protegido 386.
  • Protección de la memoria entre procesos, de manera que uno de ellos no pueda colgar el sistema.
  • Carga de ejecutables por demanda: Linux sólo lee del disco aquellas partes de un programa que están siendo usadas actualmente.
  • Política de copia en escritura para la compartición de páginas entre ejecutables: esto significa que varios procesos pueden usar la misma zona de memoria para ejecutarse. Cuando alguno intenta escribir en esa memoria, la página (4Kb de memoria) se copia a otro lugar. Esta política de copia en escritura tiene dos beneficios: aumenta la velocidad y reduce el uso de memoria.
  • Memoria virtual usando paginación (sin intercambio de procesos completos) a disco: A una partición o un archivo en el sistema de archivos, o ambos, con la posibilidad de añadir más áreas de intercambio sobre la marcha Un total de 16 zonas de intercambio de 128Mb de tamaño máximo pueden ser usadas en un momento dado con un límite teórico de 2Gb para intercambio. Este limite se puede aumentar facilmente con el cambio de unas cuantas lineas en el codigo fuente.
  • La memoria se gestiona como un recurso unificado para los programas de usuario y para el caché de disco, de tal forma que toda la memoria libre puede ser usada para caché y ésta puede a su vez ser reducida cuando se ejecuten grandes programas.
  • Librerías compartidas de carga dinámica (DLL's) y librerías estáticas.
  • Se realizan volcados de estado (core dumps) para posibilitar los análisis post-mortem, permitiendo el uso de depuradores sobre los programas no sólo en ejecución sino también tras abortar éstos por cualquier motivo.
  • Compatible con POSIX, System V y BSD a nivel fuente.
  • Emulación de iBCS2, casi completamente compatible con SCO, SVR3 y SVR4 a nivel binario.
  • Todo el código fuente está disponible, incluyendo el núcleo completo y todos los drivers, las herramientas de desarrollo y todos los programas de usuario; además todo ello se puede distribuir libremente. Hay algunos programas comerciales que están siendo ofrecidos para Linux actualmente sin código fuente, pero todo lo que ha sido gratuito sigue siendo gratuito.
  • Control de tareas POSIX.
  • Pseudo-terminales (pty's).
  • Emulación de 387 en el núcleo, de tal forma que los programas no tengan que hacer su propia emulación matemática. Cualquier máquina que ejecute Linux parecerá dotada de coprocesador matemático. Por supuesto, si el ordenador ya tiene una FPU (unidad de coma flotante), esta será usada en lugar de la emulación, pudiendo incluso compilar tu propio kernel sin la emulación matemática y conseguir un pequeño ahorro de memoria.
  • Soporte para muchos teclados nacionales o adaptados y es bastante fácil añadir nuevos dinámicamente.
  • Consolas virtuales múltiples: varias sesiones de login a través de la consola entre las que se puede cambiar con las combinaciones adecuadas de teclas (totalmente independiente del hardware de video). Se crean dinámicamente y puedes tener hasta 64.
  • Soporte para varios sistemas de archivo comunes, incluyendo minix-1, Xenix y todos los sistemas de archivo típicos de System V, y tiene un avanzado sistema de archivos propio con una capacidad de hasta 4 Tb y nombres de archivos de hasta 255 caracteres de longitud.
  • Acceso transparente a particiones MS-DOS (o a particiones OS/2 FAT) mediante un sistema de archivos especial: no es necesario ningún comando especial para usar la partición MS-DOS, esta parece un sistema de archivos normal de Unix (excepto por algunas restricciones en los nombres de archivo, permisos, y esas cosas). Las particiones comprimidas de MS-DOS 6 no son accesibles en este momento, y no se espera que lo sean en el futuro. El soporte para VFAT (WNT, Windows 95) ha sido añadido al núcleo de desarrollo y estará en la próxima versión estable.
  • Un sistema de archivos especial llamado UMSDOS que permite que Linux sea instalado en un sistema de archivos DOS.
  • Soporte en sólo lectura de HPFS-2 del OS/2 2.1
  • Sistema de archivos de CD-ROM que lee todos los formatos estándar de CD-ROM.
  • TCP/IP, incluyendo ftp, telnet, NFS, etc.
  • Appletalk.
  • Software cliente y servidor Netware.
  • Lan Manager / Windows Native (SMB), software cliente y servidor.
  • Diversos protocolos de red incluidos en el kernel: TCP, IPv4, IPv6, AX.25, X.25, IPX, DDP, Netrom, etc.

miércoles, 24 de noviembre de 2010


CLASIFICACIÓN DE LOS SISTEMAS OPERATIVOS:






MULTIUSUARIO: Permite que dos o más usuarios utilicen sus programas al mismo tiempo.
MULTIPROCESADOR: Soporta el abrir un mismo programa en más de una CPU
MULTITAREA: Permite que varios programas se ejecuten al mismo tiempo.
MULTITRAMO: Permite que diversas partes de un solo programa funcionen al mismo tiempo.
TIEMPO REAL: Responde a las entradas inmediatamente.
SISTEMAS DOS Y UNIX: No funcionan en tiempo real.

Los sistemas operativos proporcionan una plataforma de software encima de la cual otros programas (aplicaciones) puedan funcionar.

Las aplicaciones se programan para que funcionen encima de un sistema operativo particular.
La elección del sistema operativo determina todas las aplicaciones que se puedan utilizar.

Los sistemas más utilizados en los PCs son:
→ DOS

→ OS/2

→ Windows

→ Linux.


DOS es una familia de sistemas operativos para PC. El nombre son las siglas de disk operating system.

OS/2 es un sistema operativo de IBM que intentó suceder a DOS como sistema operativo de las computadoras personales.

Microsoft Windows es el nombre de una serie de sistemas operativos desarrollados por microsoft desde 1981, año en que el proyecto se denominaba "Interface Manager".




El núcleo Linux, ha sido marcado por un crecimiento constante en cada momento de su historia. Desde la primera publicación de su código fuente en 1991, nacido desde un pequeño número de archivos en lenguaje C bajo una licencia que prohíbe la distribución comercial a su estado actual de cerca de 296 MiBs de fuente bajo la Licencia pública general de la GNU.

viernes, 19 de noviembre de 2010

SOFTWARE LIBRE:
El software libre (en inglés free software, esta denominación también se confunde a veces con gratis por la ambigüedad del término en el idioma inglés) es la denominación del software que respeta la libertad de los usuarios sobre su producto adquirido y, por tanto, una vez obtenido puede ser usado, copiado, estudiado, cambiado y redistribuido libremente.
Según la Free Software Foundation, el software libre se refiere a la libertad de los usuarios para ejecutar, copiar, distribuir, estudiar, modificar el software y distribuirlo modificado.


HISTORIA:

Entre 1960 y 1970, el software no era considerado un producto, sino un añadido que los vendedores de las grandes computadoras de la época aportaban a sus clientes para que éstos pudieran usarlos.

Era común que los programadores y desarrolladores de software compartieran libremente sus programas unos con otros.

En 1980, la situación empezó a cambiar; las computadoras más modernas comenzaron a utilizar sistemas operativos privados, forzando a los usuarios a aceptar condiciones restrictivas que impidieran realizar modificaciones en el software.

Si algún usuario o programador encontraba algún error en la aplicación, lo único que podía hacer era darlo a conocer a la empresa desarrolladora para que ésta lo solucionase.


Libertades
Descripción
0
La libertad de usar el programa con cualquier propósito.
1
La libertad de estudiar cómo funciona el programa y modificarlo, adaptándolo a tus necesidades.
2
La libertad de distribuir copias del programa
3
La libertad de mejorar el programa y hacer públicas esas mejoras a los demás.

Tanto las libertades 1 como la 3, requieren acceso al código fuente, puesto que estudiar y modificar el software sin su código fuente, es poco visible.


TIPOS DE LICENCIAS:

→ licencias GPL.

→licencias AGPL.

→licencias estilo BSD.

→ licencias estilo MPL y derivadas.

→ licencias copyleft.


Licencias GPL:
es una licencia creada por la Free Software Fundation en 1989, y está orientada principalmente a proteger la libre distribución, modificación y uso de softwaree.

Licencias AGPL:
es una licencia copyleft derivada de la licencia pública general de GNU deseñada especificamente para asegurar la cooperación con la comunidad en el caso de software que corra en servidores de red.

Licencia estilo BSD:
son muy permisivas, ya que son facilmente absorbidas al ser mezcladas con la licencia GNU GPL con quienes son compatibles.
Puede argumentarse que ésta licencia asegura verdadero software libre, en el sentido que el usuario tiene libertad ilimitada con respecto al software, y que puede decidir incluso de distribuirlo como no libre.

Licencias estilo MPL y derivados:
Esta licencia es de Software Libre y tiene un gran valor porque fue el instrumento que empleó Netscape Communications Corp. para liberar su Netscape Communicator 4.0 y empezar ese proyecto tan importante para el mundo del Software Libre: Mozilla. Se utilizan en gran cantidad de productos de software libre de uso cotidiano en todo tipo de sistemas operativos. La MPL es Software Libre y promueve eficazmente la colaboración evitando el efecto "viral" de la GPL (si usas código licenciado GPL, tu desarrollo final tiene que estar licenciado GPL). Desde un punto de vista del desarrollador la GPL presenta un inconveniente en este punto, y lamentablemente mucha gente se cierra en banda ante el uso de dicho código. No obstante la MPL no es tan excesivamente permisiva como las licencias tipo BSD. Estas licencias son denominadas de copyleft débil. La NPL (luego la MPL) fue la primera licencia nueva después de muchos años, que se encargaba de algunos puntos que no fueron tenidos en cuenta por las licencias BSD y GNU. En el espectro de las licencias de software libre se la puede considerar adyacente a la licencia estilo BSD, pero perfeccionada.

Copyleft:

Es una característica de algunas licencias utilizadas para regular las restricciones impuestas por el derecho de autor de obras o trabajos, tales como programas informativos, arte, cultura y ciencia, es decir prácticamente casi cualquier tipo de producción creativa.
El nombre surge como oposición al copyright tradicional. Se considera que una licencia es copyleft cuando además de otorgar permisos de copia, modificación y redistribución de la obra protegida, contiene una cláusula que impone la misma licencia a las copias y a las obras derivadas.

viernes, 29 de octubre de 2010


EJERCICIO : BUSCA TRES MODELOS DE TRES FABRICANTES DIFERENTES DE DISCOS DUROS Y RELLENA UNA TABLA EN LA QUE SE MUESTREN LAS CARACTERÍSTICAS DE CADA UNO, SEGÚN LO ESTUDIADO.



DICOS DUROS:


CARACTERÍSTICAS:
DISCOS DUROS SEAGATE




capacidad: 750 Gb.


velocidad: 7200 rpm.


interfaz: SATA 3 Gb/s.

bufer: 16MB cach.


DISCOS DUROS TOSHIBA




capacidad formateado: 160 Gb


certificación: S.M.A.R.T.


velocidad de rotación: 5400 rpm.


DISCOS DUROS HITACHI
(externo)


fácil de encontrar, organizar y compartir tus archivos con una interfaz impresionante en 3D.


protección de archivos con dos niveles de copia de seguridad fiable: local y en línea.


interfaz USB 2.0, compatible con PC y MAC.



lunes, 25 de octubre de 2010

                                              LOS NETBOOKS:
Son una categoría de portatil de menor dimensiones y de un coste menor.
Éste tipo de portátiles son  principalmente utilizados para navegar por internet, procesador de textos y hoja de cálculos, con el cuál puedes tener una mayor autonomía.

Son una nueva clase de portátiles que eliminan la unidad de CD, y reducen la potencia de otros componentes como la tarjeta gráfica.

                           LOS PORTÁTILES:

Características

  • Por lo general funcionan empleando una batería o un adaptador que permite tanto cargar la batería como dar suministro de energía.
  • Suelen poseer una pequeña batería que permite mantener el reloj y otros datos en caso de falta de energía.
  • En general, a igual precio, las notebooks suelen tener menos potencia que las computadoras de escritorio, incluso menor capacidad en los discos duros, menos poder de video y audio, y menor potencia en los microprocesadores. De todas maneras, suelen consumir menos energía y son más silenciosas.
  • Suelen contar con una pantalla LCD y un touchpad.
  • En general, cuentan con PC Card (antiguamente PCMCIA) o ExpressCard para tarjetas de expansión.
  • Existe un tipo de notebooks llamadas netbooks, que son más pequeñas y más livianas, M 570E
  • No hay todavía un factor de forma industrial estándar para las notebook, es decir, cada fabricante tiene su propio estilo de diseño y construcción. Esto incrementa los precios de los componentes en caso de que haya que reemplazarlos o repararlos, y hace que resulten más difíciles de conseguir. Incluso a menudo existen incompatibilidades entre componentes de notebooks de un mismo fabricante.
Los principales fabricantes de microprocesadores 
 
 MOTOROLA: Fabrica de dispositivos semiconductores fundada en 1928 por PAUL GALVIN en Chicago. 
Su primer producto permitió que los radios domésticos usaran la corriente doméstica en lugar de baterías.  
En los años 30 fabricó radios para automóviles y en 1947 MOTOROLA se formó como compañía. Esta compañía es la fabricante del microprocesador 68000

INTEL: INTEL CORPORATION Es una fabrica líder de dispositivos semiconductores que fue fundada en 1968 por BOB NOYCE y GORDEN MORE en MOUNTAIN VIEW, California.
Un año mas tarde introdujo su primer producto un chip RAM bipolar estático de 64 bits. Para 1971 los chips de memoria comenzaron a reemplazar los núcleos de ferrita.
Intel fue la empresa que inventó el microprocesador en 1971 con el nombre de chip 4004 y su primer gran éxito fue el microprocesador 8086. 

HEWLETT-PACKARD: Compañía fabricante de computadoras fundada en el año de 1939 por WILLIAM HEWLETT y DAVID PACKARD en California.
Su primer gran cliente fue WALT DISNEY STUDIOS, a quien le vendió elementos para desarrollar el sonido de sus películas.
En 1966 entró al campo de computadoras con la 2116 A la primera de la familia HP 1000, para la supervisión y control de procesos.
En 1972 lanzó la serie HP 3000 un sistema multiusuario de gran rendimiento y fiabilidad.
En ese mismo año lanzó su primera calculadora electrónica que remplazó la regla de cálculo la HP-35, en 1982 presentó la primera estación de trabajo la HP 9000, también desarrollo su primera PC LA HP TOUCHSCREEN 150 de modesta aceptación, y en 1985 la primera 286 con MSDOS llamada VECTRA compatible con IBM.
En 1984 desarrollo la primera impresora LASER JET, creando un estándar para la industria. Hoy en día es una compañía líder.



viernes, 22 de octubre de 2010

MICROPROCESADOR.

La evolución del microprocesador

El microprocesador es un producto de la computadora y la tecnología semiconductora. Su desarrollo se eslabona desde la mitad de los años 50; estas tecnologías se fusionaron a principios de los años 70, produciendo el llamado microprocesador.

Iniciaron su desarrollo desde la segunda guerra mundial.

La tecnología de circuitos electrónicos avanzó y los científicos hicieron grandes progresos en el diseño de dispositivos físicos de Estado Sólido. En 1948 en los laboratorios Bell crearon el Transistor.
En los años 50, aparecen las primeras computadoras digitales de propósito general. Éstas usaban tubos al vacío o bulbos como componentes electrónicos activos. Tarjetas o módulos de tubos al vacío fueron usados para construir circuitos lógicos básicos tales como compuertas lógicas y flip-flops (Celda donde se almacena un bit). Ensamblando compuertas y flip-flops en módulos, los científicos construyeron la computadora (la lógica de control, circuitos de memoria, etc.). Los tubos de vacío también formaron parte de la construcción de máquinas para la comunicación con las computadoras. Para el estudio de los circuitos digitales, en la construcción de un circuito sumador simple se requiere de algunas compuertas lógicas.
La construcción de una computadora digital requiere de muchos circuitos o dispositivos electrónicos. El principal paso tomado en la computadora fue hacer que el dato fuera almacenado en memoria como una forma de palabra digital. La idea de almacenar programas fue muy importante.
La tecnología de los circuitos de estado sólido evolucionó en la década de los años 50. El empleo del silicio, de bajo costo y con métodos de producción masiva, hicieron al transistor ser el más usado para el diseño de circuitos. Por lo tanto el diseño de la computadora digital fue un gran avance del cambio para reemplazar al tubo al vacío por el transistor a finales de los años 50.
A principios de los años 60, el arte de la construcción de computadoras de estado sólido se incrementó y surgieron las tecnologías en circuitos digitales como: RTL (Lógica Transistor Resistor), DTL (Lógica Transistor Diodo), TTL (Lógica Transistor Transistor), ECL (Lógica Complementada Emisor).
A mediados de los años 60 se producen las familias de lógica digital, dispositivos en escala SSI y MSI que corresponden a baja y mediana escala de integración de componentes en los circuitos de fabricación. A finales de los años 60's y principios de los años 70 surgieron los sistemas a alta escala de integración o LSI. La tecnología LSI fue haciendo posible más y más circuitos digitales en un circuito integrado. Sin embargo, pocos circuitos LSI fueron producidos, los dispositivos de memoria fueron un buen ejemplo.
Las primeras calculadoras electrónicas requerían de 75 a 100 circuitos integrados. Después se dio un paso importante en la reducción de la arquitectura de la computadora a un circuito integrado simple, resultando un circuito que fue llamado el microprocesador, unión de las palabras "Micro" del griego μικρο-, "pequeño" y procesador. Sin embargo, es totalmente válido usar el término genérico procesador, dado que con el paso de los años, la escala de integración se ha visto reducida de micrométrica a nanométrica
  • El primer microprocesador fue el Intel 4004, producido en 1971. Se desarrolló originalmente para una calculadora, y resultaba revolucionario para su época. Contenía 2.300 transistores en un microprocesador de 4 bits que sólo podía realizar 60.000 operaciones por segundo.
  • El primer microprocesador de 8 bits fue el Intel 8008, desarrollado en 1972 para su empleo en terminales informáticos. El Intel 8008 contenía 3300 transistores.
  • El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4500 transistores y podía ejecutar 200.000 instrucciones por segundo.
  • Los microprocesadores modernos tienen una capacidad y velocidad mucho mayores, acercándose a 800 millones de transistores, como es en el caso de las serie Core i7

Historia de los Microprocesadores


El pionero de los actuales microprocesadores el 4004 de Intel.

Imagen de un Intel 80286, mejor conocido como 286.

Imagen de un Intel 80486, conocido también como 486SX de 33Mhz.

La parte de posterior de un Pentium Pro. Este chip en particular es uno de 200MHz, con 256KB de cache L2.

Un procesador Pentium II, se puede observar su estilo de zocket diferente.

Imagen de un procesador Celeron "Coppermine 128" 600 MHz.

Imagen de un procesador Pentium III de Intel.
  • 1971: MICROPROCESADOR 4004
El 4004 fue el primer microprocesador de Intel. Este descubrimiento impulsó la calculadora de Busicom y pavimentó la manera para integrar inteligencia en objetos inanimados así como la computadora personal.
  • 1972: MICROPROCESADOR i8008
Codificado inicialmente como 1201, fue pedido a Intel por Computer Terminal Corporation para usarlo en su terminal programable Datapoint 2200, pero debido a que Intel terminó el proyecto tarde y a que no cumplía con la expectativas de Computer Terminal Corporation, finalmente no fue usado en el Datapoint 2200. Posteriormente Computer Terminal Corporation e Intel acordaron que el i8008 pudiera ser vendido a otros clientes.
  • 1974: MICROPROCESADOR 8080
Los 8080 se convirtieron en los cerebros de la primera computadora personal la Altair 8800 de MITS, según se alega, nombrada en base a un destino de la Nave Espacial "Starship" del programa de televisión Viaje a las Estrellas, y el IMSAI 8080, formando la base para las máquinas que corrían el sistema operativo CP/M. Los fanáticos de las computadoras podían comprar un equipo Altair por un precio (en aquel momento) de $395. En un periodo de pocos meses, vendió decenas de miles de estas computadoras personales.
  • 1978: MICROPROCESADOR 8086-8088
Una venta realizada por Intel a la nueva división de computadoras personales de IBM, hizo que los cerebros de IBM dieran un gran golpe comercial con el nuevo producto para el 8088, el IBM PC. El éxito del 8088 propulsó a Intel en la lista de las 500 mejores compañías de la prestigiosa revista Fortune, y la revista nombró la compañía como uno de Los triunfos comerciales de los sesenta.
  • 1982: MICROPROCESADOR 286
El 286, también conocido como el 80286, era el primer procesador de Intel que podría ejecutar todo el software escrito para su predecesor. Esta compatibilidad del software sigue siendo un sello de la familia de Intel de microprocesadores. Luego de 6 años de su introducción, había un estimado de 15 millones de 286 basados en computadoras personales instalados alrededor del mundo.
  • 1985: EL MICROPROCESADOR INTEL 386
El procesador Intel 386 ofreció 275 000 transistores, más de 100 veces tantos como en el original 4004. El 386 añadió una arquitectura de 32 bits, poseía capacidad multitarea, que significa que podría ejecutar múltiples programas al mismo tiempo y una unidad de traslación de páginas, lo que hizo mucho más sencillo implementar sistemas operativos que emplearan memoria virtual.
  • 1989: EL DX CPU MICROPROCESADOR INTEL 486
La generación 486 realmente significó que el usuario contaba con una computadora con muchas opciones avanzadas, entre ellas,un conjunto de instrucciones optimizado, una unidad de coma flotante y un caché unificado integrados en el propio circuito integrado del microprocesador y una unidad de interfaz de bus mejorada. Estas mejoras hacen que los i486 sean el doble de rápidos que un i386 e i387 a la misma frecuencia de reloj. El procesador Intel 486 fue el primero en ofrecer un coprocesador matemático integrado, el cual acelera las tareas del micro, porque ofrece la ventaja de que las operaciones matemáticas complejas son realizadas (por el coprocesador) de manera independiente al funcionamiento del procesador central (CPU).
  • 1991: AMD AMx86
Procesadores lanzados por AMD 100% compatible con los códigos de Intel de ese momento, ya que eran clones, pero llegaron a superar incluso la frecuencia de reloj de los procesadores de Intel a precios significativamente menores. Aquí se incluyen las series Am286, Am386, Am486 y Am586
  • 1993: PROCESADOR DE PENTIUM
El procesador de Pentium poseía una arquitectura capaz de ejecutar dos operaciones a la vez gracias a sus dos pipeline de datos de 32bits cada uno, uno equivalente al 486DX(u) y el otro equivalente a 486SX(u). Además, poseía un bus de datos de 64 bits, permitiendo un acceso a memoria 64 bits (aunque el procesador seguía manteniendo compatibilidad de 32 bits para las operaciones internas y los registros también eran de 32 bits). Las versiones que incluían instrucciones MMX no únicamente brindaban al usuario un mejor manejo de aplicaciones multimedia, como por ejemplo, la lectura de películas en DVD, sino que se ofrecían en velocidades de hasta 233 MHz, incluyendo una versión de 200 MHz y la más básica proporcionaba unos 166 MHz de reloj. El nombre Pentium, se mencionó en las historietas y en charlas de la televisión a diario, en realidad se volvió una palabra muy popular poco después de su introducción.
  • 1995: PROCESADOR PENTIUM PROFESIONAL
Lanzado al mercado para el otoño de 1995 el procesador Pentium Pro se diseña con una arquitectura de 32 bits, su uso en servidores, los programas y aplicaciones para estaciones de trabajo (redes) impulsan rápidamente su integración en las computadoras. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo iba más despacio que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits. Cada procesador Pentium Pro estaba compuesto por unos 5,5 millones de transistores.
  • 1996: AMD K5
Habiendo abandonado los clones se fabricada AMD de tecnologías análogas a Intel. AMD sacó al mercado su primer procesador propio, el K5, rival del Pentium. La arquitectura RISC86 del AMD K5 era más semejante a la arquitectura del Intel Pentium Pro que a la del Pentium. El K5 es internamente un procesador RISC con una Unidad x86- decodificadora que transforma todos los comandos x86 de la aplicación en comandos RISC. Este principio se usa hasta hoy en todos los CPUs x86. En todos los aspectos era superior el K5 al Pentium, sin embargo AMD tenía poca experiencia en el desarrollo de microprocesadores y los diferentes hitos de producción marcados se fueron superando sin éxito y fué retrasado 1 año de su salida, a razón de éste retraso, sus frecuencias de trabajo eran inferiores a la competencia y por tanto, los fabricantes de PC dieron por hecho que era peor.
  • 1997: PROCESADOR PENTIUM II
El procesador de 7,5 millones de transistores Pentium II, se busca entre los cambios fundamentales con respecto a su predecesor, mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a éste. Gracias al nuevo diseño de este procesador, los usuarios de PC pueden capturar, pueden revisar y pueden compartir fotografías digitales con amigos y familia vía Internet; revisar y agregar texto, música y otros; con una línea telefónica, el enviar video a través de las líneas normales del teléfono mediante el Internet se convierte en algo cotidiano.
  • 1996: AMD K6 Y AMD K6-2
Con el K6, AMD no sólo consiguió hacerle seriamente la competencia a Intel en el terreno de los Pentium MMX, sino que además amargó lo que de otra forma hubiese sido un plácido dominio del mercado, ofreciendo un procesador que casi se pone a la altura del mismísimo Pentium II por un precio muy inferior a sus análogos. En cálculos en coma flotante, el K6 también quedó por debajo del Pentium II, pero por encima del Pentium MMX y del Pro. El K6 contó con una gama que va desde los 166 hasta los mas de 500 Mhz y con el juego de instrucciones MMX, que ya se han convertido en estándar.
Más adelante lanzó una mejora de los K6, los K6-2 a 250 nanómetros, para seguir compitiendo con lso Pentium II, siéndo éste último superior en tareas de coma flotante, pero inferior en tareas de uso general. Se introducen un juego de instrucciones SIMD denominado 3DNow!
  • 1998: EL PROCESADOR PENTIUM II XEON
Los procesadores Pentium II Xeon se diseñan para cumplir con los requisitos de desempeño en computadoras de medio-rango, servidores más potentes y estaciones de trabajo (workstations). Consistente con la estrategia de Intel para diseñar productos de procesadores con el objetivo de llenar segmentos de los mercados específicos, el procesador Pentium II Xeon ofrece innovaciones técnicas diseñadas para las estaciones de trabajo (workstations) y servidores que utilizan aplicaciones comerciales exigentes como servicios de Internet, almacenaje de datos corporativo, creaciones digitales y otros. Pueden configurarse sistemas basados en el procesador para integrar de cuatro o ocho procesadores y más allá de este número.
  • 1999: EL PROCESADOR CELERON
Continuando la estrategia de Intel, en el desarrollo de procesadores para los segmentos del mercado específicos, el procesador Intel Celeron es el nombre que lleva la línea de procesadores de bajo coste de Intel. El objetivo era poder, mediante ésta segunda marca, penetrar en los mercados impedidos a los Pentium, de mayor rendimiento y precio. Se diseña para el añadir valor al segmento del mercado de los PC. Proporcionó a los consumidores una gran actuación a un bajo coste, y entregó un desempeño destacado para usos como juegos y el software educativo.
  • 1999: AMD ATHLON K7 (CLASSIC Y THUNDERBIRD)
Procesador compatible con la arquitectura x86. Internamente el Athlon es un rediseño de su antecesor, al que se le mejoró substancialmente el sistema de coma flotante (ahora son 3 unidades de coma flotante que pueden trabajar simultáneamente) y se le aumentó la memoria caché de primer nivel (L1) a 128 KB (64 KB para datos y 64 KB para instrucciones). Además incluye 512 KB de caché de segundo nivel (L2). El resultado fue el procesador x86 más potente del momento
El procesador Athlon con núcleo Thunderbird apareció como la evolución del Athlon Classic. Al igual que su predecesor, también se basa en la arquitectura x86 y usa el bus EV6. El proceso de fabricación usado para todos estos microprocesadores es de 180 nanómetros El Athlon Thunderbird consolidó a AMD como la segunda mayor compañía de fabricación de microprocesadores, ya que gracias a su excelente rendimiento (superando siempre al Pentium III y a los primeros Pentium IV de Intel a la misma velocidad de reloj) y bajo precio, la hicieron muy popular tanto entre los entendidos como en los iniciados en la informática.
  • 1999: PROCESADOR PENTIUM III
El procesador Pentium III ofrece 70 nuevas instrucciones (Internet Streaming, las extensiones de SIMD las cuales refuerzan dramáticamente el desempeño con imágenes avanzadas, 3D, añadiendo una mejor calidad de audio, video y desempeño en aplicaciones de reconocimiento de voz. Fue diseñado para reforzar el área del desempeño en el Internet, le permite a los usuarios hacer cosas, tales como, navegar a través de páginas pesadas (llenas de gráficas) como las de los museos online, tiendas virtuales y transmitir archivos video de alta calidad. El procesador incorpora 9,5 millones de transistores, y se introdujo usando en él la tecnología 250 nanómetros.
  • 1999: EL PROCESADOR PENTIUM III XEON
El procesador Pentium III Xeon amplia las fortalezas de Intel en cuanto a las estaciones de trabajo (workstation) y segmentos de mercado de servidor y añade una actuación mejorada en las aplicaciones del comercio electrónico y la informática comercial avanzada. Los procesadores incorporan tecnología que refuerzan los multimedios y las aplicaciones de video. La tecnología del procesador III Xeon acelera la transmisión de información a través del bus del sistema al procesador, mejorando la actuación significativamente. Se diseña pensando principalmente en los sistemas con configuraciones de multiprocesador.
  • 2000: PENTIUM 4
El Pentium 4 es un microprocesador de séptima generación basado en la arquitectura x86 y fabricado por Intel. Es el primer microprocesador con un diseño completamente nuevo desde el Pentium Pro. Se estreno la arquitectura NetBurst, la cual no daba mejoras considerables respecto a la anterior P6. Intel sacrificó el rendimiento de cada ciclo para obtener a cambio mayor cantidad de ciclos por segundo y una mejora en las instrucciones SSE.
  • 2001: ATHLON XP
Cuando Intel sacó el Pentium 4 a 1,7 GHz en abril de 2001 se vio que el Athlon Thunderbird no estaba a su nivel. Además no era práctico para el overclocking, entonces para seguir estando a la cabeza en cuanto a rendimiento de los procesadores x86, AMD tuvo que diseñar un nuevo núcleo, por eso sacó el Athlon XP. Compatibilizaba las instrucciones SSE y las 3DNow! Entre las mejoras respecto al Thunderbird podemos mencionar la prerrecuperación de datos por hardware, conocida en inglés como prefetch, y el aumento de las entradas TLB, de 24 a 32.
  • 2004: PENTIUM 4 (PRESCOTT)
A principios de febrero de 2004, Intel introdujo una nueva versión de Pentium 4 denominada 'Prescott'. Primero se utilizó en su manufactura un proceso de fabricación de 90 nm y luego se cambió a 65nm. Su diferencia con los anteriores es que éstos poseen 1 MB o 2 MB de caché L2 y 16 KB de caché L1 (el doble que los Northwood), Prevención de Ejecución, SpeedStep, C1E State, un HyperThreading mejorado, instrucciones SSE3, manejo de instrucciones AMD64, de 64 bits creadas por AMD, pero denominadas EM64T por Intel, sin embargo por graves problemas de temperatura y consumo, resultaron un fracaso frente a los Athlon 64.
  • 2004: ATHLON 64
El AMD Athlon 64 es un microprocesador x86 de octava generación que implementa el conjunto de instrucciones AMD64, que fueron introducidas con el procesador Opteron. El Athlon 64 presenta un controlador de memoria en el propio circuito integrado del microprocesador y otras mejoras de arquitectura que le dan un mejor rendimiento que los anteriores Athlon y Athlon XP funcionando a la misma velocidad, incluso ejecutando código heredado de 32 bits.El Athlon 64 también presenta una tecnología de reducción de la velocidad del procesador llamada Cool'n'Quiet,. Cuando el usuario está ejecutando aplicaciones que requieren poco uso del procesador, la velocidad del mismo y su tensión se reducen.
  • 2006: INTEL CORE Y CORE 2 DUO
Intel lanzó ésta gama de procesadores de doble núcleo y CPUs 2x2 MCM (Módulo Multi-Chip) de cuatro núcleos con el conjunto de instrucciones x86-64, basado en el la nueva arquitectura Core de Intel. La microarquitectura Core regresó a velocidades de CPU bajas y mejoró el uso del procesador de ambos ciclos de velocidad y energía comparados con anteriores NetBurst de los CPUs Pentium 4/D2 La microarquitectura Core provee etapas de decodificación, unidades de ejecución, caché y buses más eficientes, reduciendo el consumo de energía de CPUs Core 2, mientras se incrementa la capacidad de procesamiento. Los CPUs de Intel han variado muy bruscamente en consumo de energía de acuerdo a velocidad de procesador, arquitectura y procesos de semiconductor, mostrado en las tablas de disipación de energía del CPU. Esta gama de procesadores fueron fabricados de 65 a 45 nanómetros.
  • 2007: AMD PHENOM
Phenom fue el nombre dado por Advanced Micro Devices (AMD) a la primera generación de procesadores de tres y cuatro núcleos basados en la microarquitectura K10. Como característica común todos los Phenom tienen tecnología de 65 nanómetros lograda a través de tecnología de fabricación Silicon on insulator (SOI). No obstante, Intel, ya se encontraba fabricando mediante la más avanzada tecnología de proceso de 45 nm en 2008. Los procesadores Phenom están diseñados para facilitar el uso inteligente de energía y recursos del sistema, listos para la virtualización, generando un óptimo rendimiento por vatio. Todas las CPUs Phenom poseen características como controlador de memoria DDR2 integrado, tecnología HyperTransport y unidades de coma flotante de 128 bits, para incrementar la velocidad y el rendimiento de los cálculos de coma flotante. La arquitectura Direct Connect asegura que los cuatro núcleos tengan un óptimo acceso al controlador integrado de memoria, logrando un ancho de banda de 16 Gb/s para intercomunicación de los núcleos del microprocesador y la tecnología HyperTransport, de manera que las escalas de rendimiento mejoren con el número de núcleos. Tiene caché L3 compartida para un acceso más rápido a los datos (y así no depender tanto de la propia latencia de la RAM), además de compatibilidad de infraestructura de los socket AM2, AM2+ y AM3 para permitir un camino de actualización sin sobresaltos. A pesar de todo, no llegaron a igualar el rendimiento de la serie Core 2 Duo.
  • 2008: INTEL CORE NEHALEM
Intel Core i7 es una familia de procesadores de cuatro núcleos de la arquitectura Intel x86-64. Los Core i7 son los primeros procesadores que usan la microarquitectura Nehalem de Intel y es el sucesor de la familia Intel Core 2. FSB es reemplazado por la interfaz QuickPath en i7 e i5 (socket 1366), y sustituido a su vez en i7, i5 e i3 (socket 1156) por el DMI eliminado el northBrige e implementando puertos PCI Express directamente. Memoria de tres canales (ancho de datos de 192 bits): cada canal puede soportar una o dos memorias DIMM DDR3. Las placa base compatibles con Core i7 tienen cuatro (3+1) o seis ranuras DIMM en lugar de dos o cuatro, y las DIMMs deben ser instaladas en grupos de tres, no dos. El Hyperthreading fue reimplementado creando nucleos lógicos. Está fabricado a arquitecturas de 45 nm y 32 nm y posee 731 millones de transistores su versión más potente. Se volvió a usar frecuencias altas, aunque a contrapartida los consumos se dispararon.
  • 2008: AMD PHENOM II Y ATHLON II
Phenom II es el nombre dado por AMD a una familia de microprocesadores o CPUs multinúcleo (multicore) fabricados en 45 nm, la cual sucede al Phenom original y dieron soporte a DDR3. Una de las ventajas del paso de los 65 nm a los 45 nm, es que permitió aumentar la cantidad de cache L3. De hecho, ésta se incrementó de una manera generosa, pasando de los 2 MB del Phenom original a 6 MB.
  • 2010: INTEL CORE SANDY BRIDGE
Los próximos procesadores de Intel de la familia core
  • 2011: AMD BULLDOZER


Fabricación

El proceso de fabricación de un microprocesador es muy complejo. Todo comienza con un buen puñado de arena (compuesta básicamente de silicio), con la que se fabrica un monocristal de unos 20 x 150 centímetros. Para ello, se funde el material en cuestión a alta temperatura (1.370 °C) y muy lentamente se va formando el cristal.

Los detalles de un microprocesador son tan pequeños y precisos que una única mota de polvo puede destruir todo un grupo de circuitos.

La mayoría de los errores se dan en los bordes de la oblea, dando como resultados chips capaces de funcionar a velocidades menores que los del centro de la oblea o simplemente con características desactivadas, tales como núcleos. Luego la oblea es cortada y cada chip individualizado.

lunes, 27 de septiembre de 2010

Ejercicios Domótica

  1. Clasifica con ayuda de la red los sensores y los actuadores en función de la naturaleza de la señal con la que trabajen.
     
     
     
     
  2. ¿Qué es la Inmótica? Busca información sobre las instalaciones inmóticas más importantes en el Mundo y en España.
    La inmótica es: 
    la incorporación al equipamiento de edificios de uso terciario o industrial (oficinas, edificios corporativos, hoteleros, empresariales y similares), de sistemas de gestión técnica automatizada de las instalaciones, con el objetivo de reducir el consumo de energía, aumentar el confort y la seguridad de los mismos.
     
     
     
  3. Haz una valoración de los aportes de la Domótica relaonandolos con su coste. Para esto valora también el coste de su instalación sobre plano.